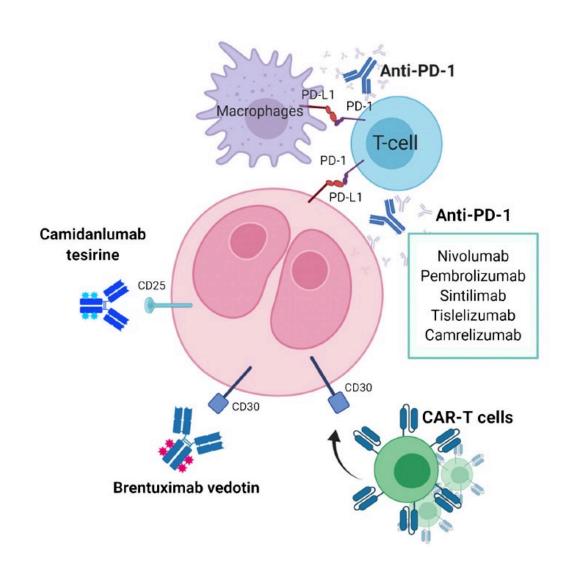


Chemotherapy-Free Treatments in cHL

Carmelo Carlo-Stella, MD


Department of Biomedical Sciences, Humanitas University, Milano, Italy Department of Oncology and Hematology, Humanitas Research Hospital, Milano, Italy

Disclosures of Carmelo Carlo-Stella

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Sanofi	Х		X			X	
ADC Therapeutics	Х		X			x	
Karyopharm Therapeutics						х	
Celgene/Bristol-Myers Squibb						Х	Honoraria
Incyte					X		
F. Hoffmann-La Roche Ltd	Х					Х	Travel grants
Janssen Oncology							Travel grants, honoraria
Takeda							Travel grants, honoraria
Merck Sharp & Dohme					X		Honoraria
AstraZeneca							Honoraria
Gilead					х		Honoraria

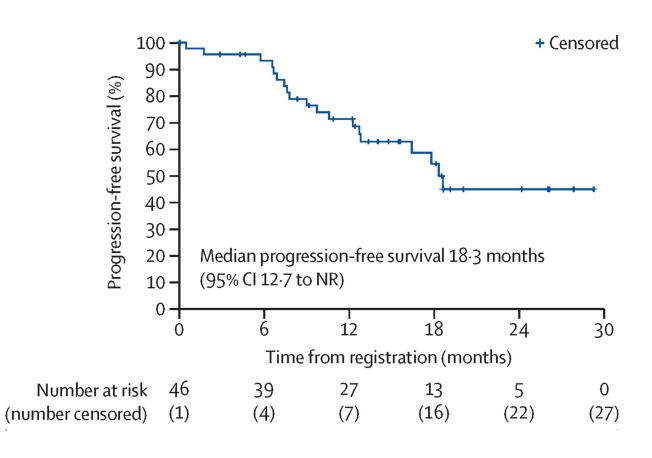
Novel Therapeutic Agents in cHL

Brentuximab

Multi-Cohort Phase II study of BV as monotherapy or in combination in treatment-naive elderly patients

Primary End Point: ORR

	BV (N=26)	BV+DTIC (N=21)	BV+Benda (N=17)	BV+Nivo (N=21)
ORR (CR+PR), (%)	92	100	100	95
CR, (%)	72	68	88	79
Median PFS, mos	10.5	46.8	40.3	Not reached
Median OS, mos	77.5	64	46.9	Not reached
Median FW, mos	59.4	58.6	51.3	<mark>19.4</mark>
AE leading to treatment discontinuation, n (%)	42	42	40	30
Death within 30-day safety period, n (%)	0	0	0	0
Peripheral neuropathy (%)	30	26	20	35
Any SAE, (%)	12	11	40	5
Gr ≥3 treatment-related AE, n (%)	50	37	70	60


BV= 1.8 mg/Kg q 3wks; BV+DTIC: BV 1.8 mg/Kg + 375 mg/mq x 12 cycles; BV+ Benda: 1.8 mg/kg + 70/90 mg/mq

Brentuximab + Nivolumab

Multicentre, single-arm, phase 2 trial

Patients outcome and response therapy

	Total (n=46)
Cycle 8 metabolic rate	61% (45–75)
Complete metabolic response	22 (48%)
Partial metabolic response	6 (13%)
Progressive Metabolic Disease	7 (15%)
Off before cycle 8	11 (24%)
Best overall response rate (all cycles)	91% (79–98)
Complete metabolic response	30 (65%)
Partial metabolic response	12 (26%)
No metabolic response	1 (2%)
Progressive metabolic disease	1 (2%)
Not evaluated	2 (4%)
Median duration of response	NR (11·1-NR)
Median overall survival	NR (NR-NR)
Median progression-free survival (months)	18·3 (12·7 to NR)
Data are median or % (95% CI) or n (%), unless other	wise specified. NR=not reached.

2L Therapy of r/r Classical Hodgkin Lymphoma

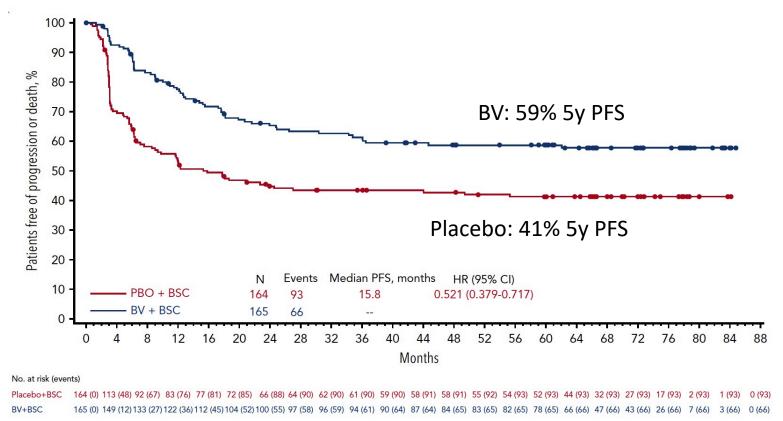
Regimen	No. of Patients	ORR (%)	CR Rate (%)	Imaging Modality	PFS or EFS (all patients)	PFS or EFS (SLT plus ASCT)	Reference
DHAP	241	70	24	СТ	NR	72% (3-year)	Josting et al ²¹
ESHAP	22	73	41	СТ	27% (3-year)	NR	Aparicio et al ²²
GDP	23	70	17	СТ	NR	NR	Baetz et al ²³
GVD	41	61	20	СТ	52% (4-year)	NR	Bartlett et al ²⁴
ICE	65	88	26	СТ	58% (3.5-year)	68% (3.5-year)	Moskowitz et al ²⁵
IGEV	91	81	54	СТ	53% (3-year)	NR	Santoro et al ²⁶
BEGEV	59	83	75	PET	59% (5-year)	77% (5-year)	Santoro et al ²⁷

Newer Options

- Brentuximab Vedotin
 - Prior to autoHSCT in case of induction failure
 - If CR, the patients are addressed to autoHSCT
 - AutoHSCT failure
 - High-risk of relapse after autoHSCT

Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma

Robert Chen,^{1,*} Ajay K. Gopal,^{2,*} Scott E. Smith,³ Stephen M. Ansell,⁴ Joseph D. Rosenblatt,⁵ Kerry J. Savage,⁶ Joseph M. Connors,⁶ Andreas Engert,⁷ Emily K. Larsen,⁸ Dirk Huebner,⁹ Abraham Fong,⁸ and Anas Younes¹⁰


Blood. 2016;128(12):1562-1566

%
100%
33%
13%
9%
4%
42%
73%
14%

Newer Options

- Brentuximab Vedotin
 - Prior to autoHSCT in case of induction failure
 - AutoHSCT failure
 - High-risk of relapse after autoHSCT

Consolidation with BV After AutoHSCT in cHL at High-Risk of Relapse

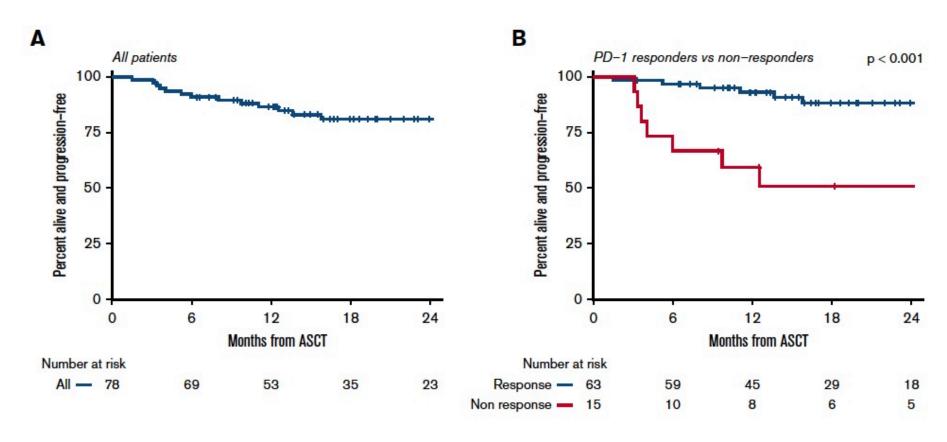
- Relapsed <12 months
- Primary refractory
- Extranodal disease
- PR/SD after salvage Tx
- B symptoms

Newer Options

- Nivolumab, Pembrolizumab
 - Prior to autoHSCT in case of induction failure (Pembro only)
 - If CR/PR, the patients are addressed to autoHSCT
 - AutoHSCT failure
 - [High-risk of relapse after autoHSCT]

Autologous stem cell transplantation after anti-PD-1 therapy for multiply relapsed or refractory Hodgkin lymphoma

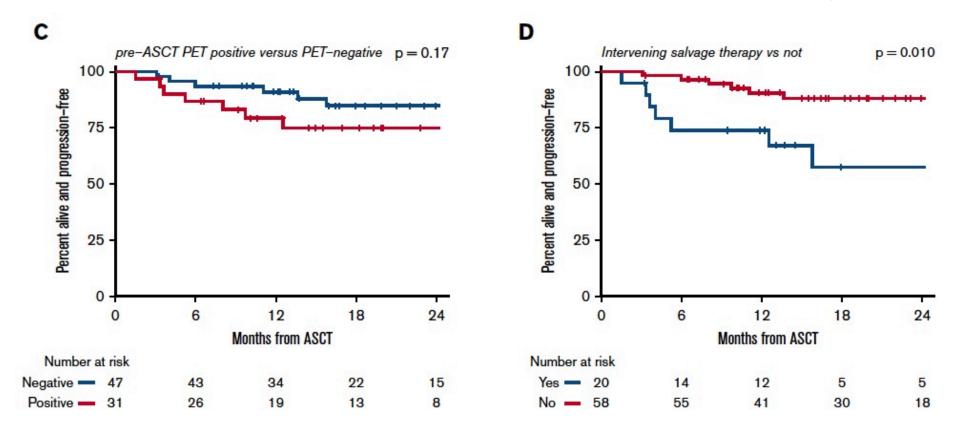
Reid W. Merryman, Robert A. Redd, Taiga Nishihori, Julio Chavez, Yago Nieto, Justin M. Darrah, Ltam Rao, Michael T. Byrne, David A. Bond, Kami J. Maddocks, Michael A. Spinner, Ranjana H. Advani, Hatcher J. Ballard, Jakub Svoboda, Matthew J. Singh, Soseph P. McGuirk, Dipenkumar Modi, Radhakrishnan Ramchandren, Sason Romancik, Matthew J. Frigault, Sti-Bin Chen, Anthony V. Serritella, Justine Kline, Stephen Ansell, Sunita Nathan, Maryam Rahimian, Robin M. Joyce, Mansi Shah, Kevin A. David, Steven Park, Anne W. Beaven, Anne Habib, Veronika Bachanova, Shazia Nakhoda, Nadia Khan, Ryan C. Lynch, Stephen D. Smith, Nincent T. Ho, Ann LaCasce, Philippe Armand, and Alex F. Herrera


Blood Advances 5:1648-1659, 2021

- Hypothesis: Anti-PD-1 therapy before ASCT would result in acceptable outcomes among high-risk patients who progressed on or responded insufficiently to ≥1 salvage regimen, including chemorefractory patients
- Included were 78 HL patients who underwent ASCT after an anti-PD-1 mAb as ≥3L therapy.
- Forty-two patients (54%) refractory to ≥2 consecutive systemic therapies immediately before anti-PD-1 treatment.
- Fifty-eight (74%) patients underwent ASCT after anti-PD-1 treatment, while 20 patients (26%) received additional therapy after PD-1 blockade and before ASCT.

Autologous stem cell transplantation after anti-PD-1 therapy for multiply relapsed or refractory Hodgkin lymphoma

Reid W. Merryman, Robert A. Redd, Taiga Nishihori, Julio Chavez, Yago Nieto, Justin M. Darrah, Uttam Rao, Michael T. Byrne, David A. Bond, Kami J. Maddocks, Michael A. Spinner, Ranjana H. Advani, Hatcher J. Ballard, Jakub Svoboda, Anurag K. Singh, Soeph P. McGuirk, Dipenkumar Modi, Radhakrishnan Ramchandren, Jason Romancik, Matthew J. Frigault, Sri-Bin Chen, Anthony V. Serritella, Justine Kline, Stephen Ansell, Sunita Nathan, Maryam Rahimian, Robin M. Joyce, Mansi Shah, Kevin A. David, Steven Park, Anne W. Beaven, Anne Habib, Weronika Bachanova, Shazia Nakhoda, Makhoda, Nadia Khan, Kayan C. Lynch, Stephen D. Smith, Nincent T. Ho, Ann LaCasce, Philippe Armand, and Alex F. Herrera


Blood Advances 5:1648-1659, 2021

Autologous stem cell transplantation after anti-PD-1 therapy for multiply relapsed or refractory Hodgkin lymphoma

Reid W. Merryman, Robert A. Redd, Taiga Nishihori, Julio Chavez, Yago Nieto, Justin M. Darrah, Uttam Rao, Michael T. Byrne, David A. Bond, Kami J. Maddocks, Michael A. Spinner, Ranjana H. Advani, Hatcher J. Ballard, Jakub Svoboda, Matthew J. Singh, Soeph P. McGuirk, Dipenkumar Modi, Radhakrishnan Ramchandren, Jason Romancik, Matthew J. Frigault, Sri-Bin Chen, Anthony V. Serritella, Justine Kline, Stephen Ansell, Sunita Nathan, Maryam Rahimian, Robin M. Joyce, Mansi Shah, Kevin A. David, Steven Park, Anne W. Beaven, Anne W. Beaven, Veronika Bachanova, Shazia Nakhoda, Nadia Khan, Kayan C. Lynch, Stephen D. Smith, Nincent T. Ho, Ann LaCasce, Philippe Armand, and Alex F. Herrera

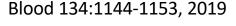
Blood Advances 5:1648-1659, 2021

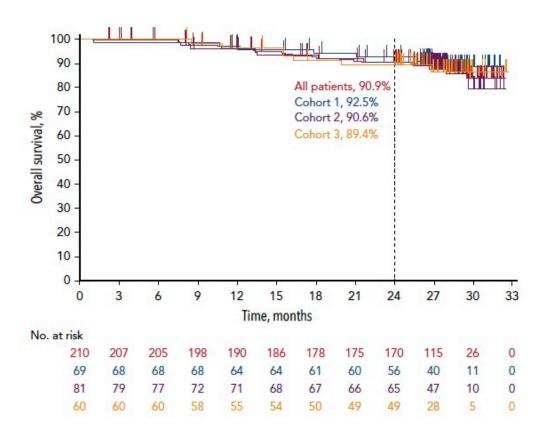
Newer Options

- Nivolumab, Pembrolizumab
 - Prior to autoHSCT in case of induction failure (Pembro only)
 - AutoHSCT failure
 - [High-risk of relapse after autoHSCT]

Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087

Robert Chen,^{1,*} Pier Luigi Zinzani,^{2,*} Hun Ju Lee,³ Philippe Armand,⁴ Nathalie A. Johnson,⁵ Pauline Brice,⁶ John Radford,⁷ Vincent Ribrag,⁸ Daniel Molin,⁹ Theodoros P. Vassilakopoulos,¹⁰ Akihiro Tomita,¹¹ Bastian von Tresckow,¹² Margaret A. Shipp,⁴ Jianxin Lin,¹³ Eunhee Kim,¹³ Akash Nahar,¹³ Arun Balakumaran,¹³ and Craig H. Moskowitz¹⁴


KEYNOTE-087 - single-arm phase II study - 3 cohorts of patients with R/R HL


- 1. After Auto-SCT and BV (n = 69)
- 2. After salvage chemotherapy and BV, but ineligible for ASCT (n = 81)
- 3. After ASCT but without BV after transplant (n = 60)

mFollow-up: 27.6 months

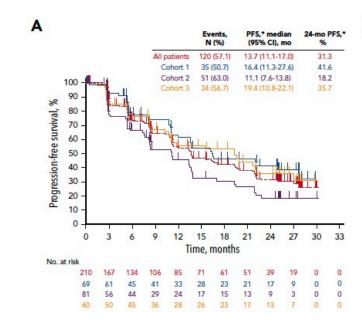
ORR: 72%; CR: 27.6%, PR: 44%

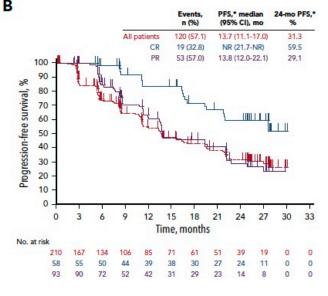
mOS: NR in all patients or in any cohort

Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087

Robert Chen,^{1,*} Pier Luigi Zinzani,^{2,*} Hun Ju Lee,³ Philippe Armand,⁴ Nathalie A. Johnson,⁵ Pauline Brice,⁶ John Radford,⁷ Vincent Ribrag,⁸ Daniel Molin,⁹ Theodoros P. Vassilakopoulos,¹⁰ Akihiro Tomita,¹¹ Bastian von Tresckow,¹² Margaret A. Shipp,⁴ Jianxin Lin,¹³ Eunhee Kim,¹³ Akash Nahar,¹³ Arun Balakumaran,¹³ and Craig H. Moskowitz¹⁴

Blood 134:1144-1153, 2019


KEYNOTE-087 - single-arm phase II study - 3 cohorts of patients with R/R HL


- 1. After Auto-SCT and BV (n = 69)
- 2. After salvage chemotherapy and BV, but ineligible for ASCT (n = 81)
- 3. After ASCT but without BV after transplant (n = 60)

mFollow-up: 27.6 months

ORR: 72%; CR: 27.6%, PR: 44%

mOS: NR in all patients or in any cohort

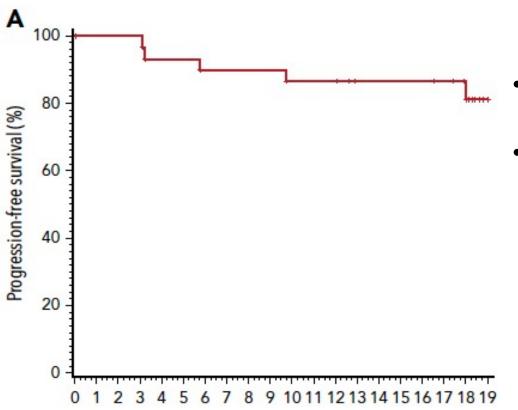
Newer Options

- Nivolumab, Pembrolizumab
 - Prior to autoHSCT in case of induction failure (Pembro only)
 - AutoHSCT failure
 - [High-risk of relapse after autoHSCT]

PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation

Philippe Armand, ¹ Yi-Bin Chen, ² Robert A. Redd, ³ Robin M. Joyce, ⁴ Jad Bsat, ¹ Erin Jeter, ¹ Reid W. Merryman, ¹ Kimberly C. Coleman, ¹ Parastoo B. Dahi, ⁵ Yago Nieto, ⁶ Ann S. LaCasce, ¹ David C. Fisher, ¹ Samuel Y. Ng, ¹ Oreofe O. Odejide, ¹ Arnold S. Freedman, ¹ Austin I. Kim, ¹ Jennifer L. Crombie, ¹ Caron A. Jacobson, ¹ Eric D. Jacobsen, ¹ Jeffrey L. Wong, ¹ Sanjay S. Patel, ⁷ Jerome Ritz, ¹ Scott J. Rodig, ⁷ Margaret A. Shipp, ¹ and Alex F. Herrera⁸

Blood 134:22-29, 2019


• Hypothesis: Pembrolizumab as consolidation after ASCT would improve the PFS at 18 months after ASCT (primary end point) from 60% to 80%

- R/R HL patients (n= 30) deemed at high-risk by clinical criteria were enrolled
- They had received ASCT and had chemosensitive disease, i.e., they had achieved PMR or CMR after salvage therapy and prior to ASCT
- Pembrolizumab at 200 mg IV every 3 weeks for up to 8 cycles, starting within 21 days of post-ASCT discharge
- **Toxicity** was manageable, with 30% of patients experiencing at least 1 grade 3 or higher AE, and 40% at least 1 grade 2 or higher immune-related AE.

PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation

Philippe Armand, ¹ Yi-Bin Chen, ² Robert A. Redd, ³ Robin M. Joyce, ⁴ Jad Bsat, ¹ Erin Jeter, ¹ Reid W. Merryman, ¹ Kimberly C. Coleman, ¹ Parastoo B. Dahi, ⁵ Yago Nieto, ⁶ Ann S. LaCasce, ¹ David C. Fisher, ¹ Samuel Y. Ng, ¹ Oreofe O. Odejide, ¹ Arnold S. Freedman, ¹ Austin I. Kim, ¹ Jennifer L. Crombie, ¹ Caron A. Jacobson, ¹ Eric D. Jacobsen, ¹ Jeffrey L. Wong, ¹ Sanjay S. Patel, ⁷ Jerome Ritz, ¹ Scott J. Rodig, ⁷ Margaret A. Shipp, ¹ and Alex F. Herrera⁸

Blood 134:22-29, 2019

- The 18 months PFS = 82% (5 pts had relapsed)
- The 18-month OS was 100%

Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): an interim analysis of a multicentre, randomised, open-label, phase 3 study

John Kuruvilla, Radhakrishnan Ramchandren, Armando Santoro, Ewa Paszkiewicz-Kozik, Robin Gasiorowski, Nathalie A Johnson, Laura Maria Fogliatto, Iara Goncalves, Jose S R de Oliveira, Valeria Buccheri, Guilherme F Perini, Neta Goldschmidt, Iryna Kriachok, Michael Dickinson, Mieczyslaw Komarnicki, Andrew McDonald, Muhit Ozcan, Naohiro Sekiguchi, Ying Zhu, Akash Nahar, Patricia Marinello, Pier Luiqi Zinzani, on behalf of the KEYNOTE-204 investigators*

Lancet Oncol 22:512-524, 2021

Interpretation Pembrolizumab showed statistically significant and clinically meaningful improvement in progressionfree survival compared with brentuximab vedotin, with safety consistent with previous reports. These data support pembrolizumab as the preferred treatment option for patients with relapsed or refractory classical Hodgkin lymphoma who have relapsed post-autologous HSCT or are ineligible for autologous HSCT.

KEYNOTE-204 Study Design (NCT02684292)

Key Eligibility Criteria

- Relapsed or refractory cHL
- Relapse after auto-SCT or ineligible for auto-SCT and failed 1 prior line of therapy
- Measurable disease per IWG 2007 criteria¹
- ECOG PS 0-1
- BV-naive and BV-exposed patients eligible

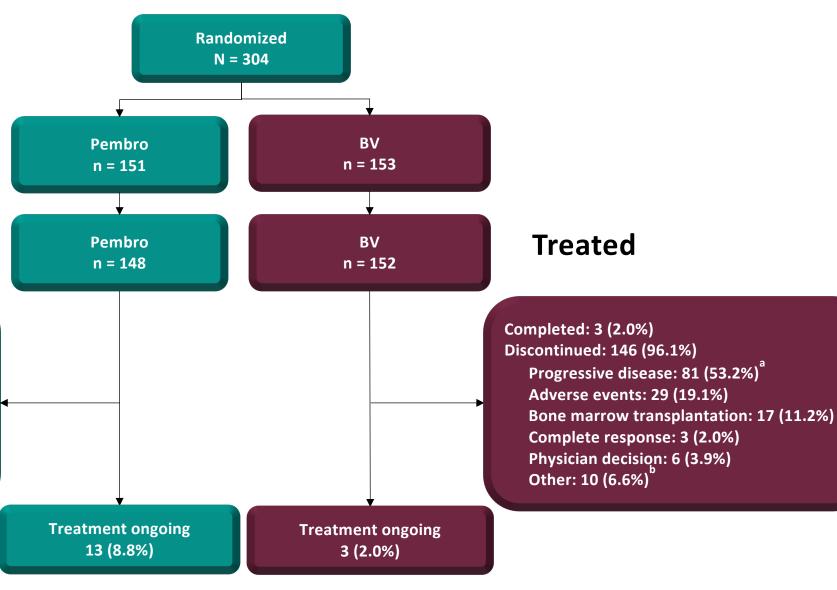
Pembrolizumab 200 mg IV Q3W Up to 35 cycles Response assessed Q12W per IWG 2007 Revised Response Criteria for Malignant Lymphoma¹ AEs evaluated Q3W throughout the trial period, and Q12W during follow-up 1.8 mg/kg IV Q3W Up to 35 cycles

Primary End Point: PFS per blinded independent central review (BICR) by IWG 2007 criteria including clinical and imaging data following auto-SCT or allogeneic stem cell transplantation (allo-SCT); OS

Secondary End Points: PFS per BICR by IWG 2007 criteria excluding clinical and imaging data following auto-SCT or allo-SCT; ORR by BICR per IWG 2007; PFS per investigator review; DOR; safety

Stratification Factors

- Prior auto-SCT (yes vs no)
- Status after 1L therapy (primary refractory vs relapsed <12 months vs relapsed ≥12 months after end of 1L therapy)


1. Cheson BD et al. J Clin Oncol. 2007;25:579-586.

Disposition

Median time from randomization to database cutoff:

25.7 months (range, 18.2-42.3)

Treated

Completed: 25 (16.9%)

Other: 10 (6.8%)

Discontinued: 110 (74.3%)

Progressive disease: 59 (39.9%)

Bone marrow transplantation: 16 (10.8%)

Adverse events: 20 (13.5%)

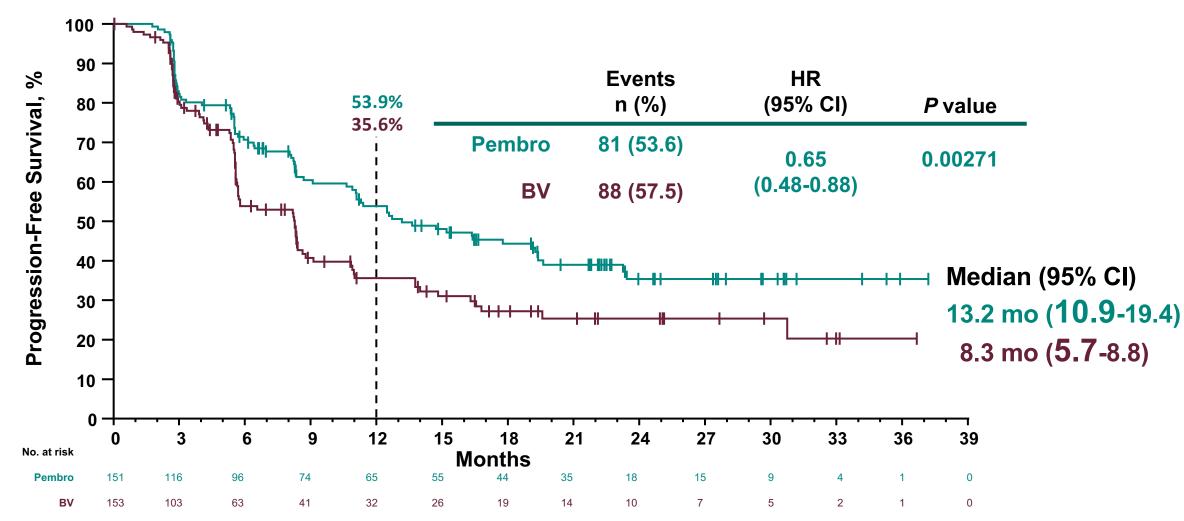
Complete response: 1 (0.7%)

Physician decision: 4 (2.7%)

^aIncludes clinical progression.

^bOther included nonstudy anticancer therapy, excluded medication, noncompliance, withdrawal by patient, and protocol deviations. Data cutoff: January 16, 2020.

Patient Characteristics


	Pembro n = 151	BV n = 153
Age, median (range)	36 (18-84)	35 (18-83)
≥65 years, n (%)	27 (17.9)	22 (14.4)
Male, n (%)	84 (55.6)	90 (58.8)
White, n (%)	119 (78.8)	115 (75.2)
ECOG PS 0, n (%)	86 (57.0)	100 (65.3)
Prior auto-SCT, n (%)		
Yes	56 (37.1)	56 (36.6)
No	95 (62.9)	97 (63.4)

	Pembro n = 151	BV n = 153			
Disease status after frontline therapy, n (%)					
Primary refractory	61 (40.4)	62 (40.5)			
Relapsed <12 months	42 (27.8)	42 (27.5)			
Relapsed ≥12 months	48 (31.8)	49 (32.0)			
Prior BV, n (%)	5 (3.3)	10 (6.5)			
Prior radiation, n (%)	58 (38.4)	61 (39.9)			
Bulky disease, n (%)	35 (23.2)	25 (16.3)			
Baseline B-symptoms, n (%)	43 (28.5)	36 (23.5)			
Baseline bone marrow involvement, n (%)	12 (7.9)	5 (3.3)			

Data cutoff: January 16, 2020.

Primary End Point: Progression-Free Survival per Blinded Independent Central Review

Including clinical and imaging data following auto-SCT or allo-SCT

Data cutoff: January 16, 2020.

Take Home Messages

• Chemo-free regimens still to demonstrate their efficacy